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We expand a result of Blatt, concerning the strong uniqueness constants of
uniform best approximations on [-1, 1]. !j) 1989 Academic Press, Inc.

Let X be compact, f E C(X), and V be a subspace of C(X), the space of
all real-valued continuous functions on X. Let v E V be a best uniform
approximation to f E C(X), i.e" a best approximation with respect to the
uniform norm

111'11 = 111'11 x:= max Ir(x)l·
XEX

v is then called a strongly unique best approximation to f; if there is a y > 0
with

Ilf-wil ~ Ilf-vll +y Ilv-wll for all WE V. (1 )

The largest constant satisfying (I) is called the strong uniqueness constant
yU) and (see [2])

~'U)= inf sup (sgnr(x»w(x),
WE v, 'wi ~ I xEE(r)

where r =f - v and

E(r):= {XEX: Ir(x)1 = Ilrll}.

Following [5] we define for a Banach space E and a subspace Us; E

l(lJ, E) :=inf{llplI: p: E-> U is a projection}.
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STRONG U"lIQUENESS CONSTANTS 359

THEOREM 1. Let V be a strongly unique best approximation to}: Then

'(f)~i.(VIH(r), C(E(r»).
y ~ ,.1,( V, C(X»

Proof By (2)

y(f)~ inf IlwllJ,(r)
we: v, !wi '::":" I

= (SUp{ Ilwll: IlwIIE(r) ~ 1, WE V} ).1.

Let T: C(E(r» ~ VIF(r) be any projection. Define r/J: Vi T:(r) ~ V by

¢>(w I/:;(r) = W.

r/J is well defined, since otherwise there is aWE V with II w II = 1 and
IV If:(r) = 0, contradicting l(f) > 0. Define for f E C(X)

S(f) :=r/J(T(fIF(r))'

Then

J.( V, C(X» ~ IISII ~ Ilr/Ji Ii Til ~ y(f) -I II TIl·

Thus

A(V, C(X»~y(f)--l A(VIF(r), C(E(r»).

This proves Theorem 1. I

COROLLARY 1. Let V = I1n , X = [a, b], and IE(r)1 = m + n + 1. Then

. 1+;; n2

y(f) = InU) ~ log(n + 1) '"4'

Proof. Since diml1nIE(r)=n+l and dimC(E(r»=n+m+l, we get
from [5, p. 341]

, ( n + 1 J(n + m)(n + 1) c)
)·(l1nlf:(r),C(E(r»)~ 1+ 1 'v'm

- n+m+ n+m+

It is a wel1-known result (see, e.g., [6]) that

J.( V, C(X» ~ 421og(n + 1).
n

Thus the result fol1ows from Theorem 1. I
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This is sharper than a result of Blatt [1]. Furthermore, the proof is
easier, since we used the functional analytic result of Konig et al. in
Theorem 1.

COROLLARY 2. Let fE COO [a, bJ, and assume that f(n+l) has o(log(nf)
zeros in [a, bJ (as n ~ ex)). Then

lim infyn(f) = O.
n- 00

(3)

Proof With the equioscillation theorem [6J and multiple application
of Rolle's theorem, one can see that

where rn denotes the error function of the best approximation with respect
to IIn- The result follows now from Corollary 1. I

Corollary 2 gives a partial answer to a question which was raised by
Poreda [7]. It has been conjectured in [4J, that all nonpolynomial
fE C(X) satisfy (3). A further result in this direction can be found in [3].
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